AskDefine | Define gallium

Dictionary Definition

gallium n : a rare silvery (usually trivalent) metallic element; brittle at low temperatures but liquid above room temperature; occurs in trace amounts in bauxite and zinc ores [syn: Ga, atomic number 31]

User Contributed Dictionary

see Gallium



Named by its discoverer Lecoq, after Gallia ‘France’, with a play on gallus as a translation of Lecoq.




  1. A chemical element (symbol Ga) with an atomic number of 31; a soft bluish metal.


Derived terms


External links

For etymology and more information refer to: (A lot of the translations were taken from that site with permission from the author)



  1. gallium



  1. gallium

Extensive Definition

Gallium () is a chemical element that has the symbol Ga and atomic number 31. A soft silvery metallic poor metal, gallium is a brittle solid at low temperatures but liquefies slightly above room temperature and will melt in the hand. It occurs in trace amounts in bauxite and zinc ores. An important application is in the compounds gallium nitride and gallium arsenide, used as a semiconductor, most notably in light-emitting diodes (LEDs).

Notable characteristics

Elemental gallium is not found in nature, but it is easily obtained by smelting. Very pure gallium metal has a brilliant silvery color and its solid metal fractures conchoidally like glass. Gallium metal expands by 3.1 percent when it solidifies, and therefore storage in either glass or metal containers is avoided, due to the possibility of container rupture with freezing. Gallium shares the higher-density liquid state with only a few materials like germanium, bismuth, antimony and water.
Gallium also attacks most other metals by diffusing into their metal lattice. Gallium for example diffuses into the grain boundaries of Al/Zn alloys or steel., making them very brittle. Also, gallium metal easily alloys with many metals, and was used in small quantities in the core of the first atomic bomb to help stabilize the plutonium crystal structure.
The melting point temperature of 29.76 °C allows the metal to be melted in one's hand. This metal has a strong tendency to supercool below its melting point/freezing point, thus necessitating seeding in order to solidify. Gallium is one of the metals (with caesium, rubidium, francium and mercury) which are liquid at or near normal room temperature, and can therefore be used in metal-in-glass high-temperature thermometers. It is also notable for having one of the largest liquid ranges for a metal, and (unlike mercury) for having a low vapor pressure at high temperatures. Unlike mercury, liquid gallium metal wets glass and skin, making it mechanically more difficult to handle (even though it is substantially less toxic and requires far fewer precautions). For this reason as well as the metal contamination problem and freezing-expansion problems noted above, samples of gallium metal are usually supplied in polyethylene packets within other containers.
Gallium does not crystallize in any of the simple crystal structures. The stable phase under normal conditions is orthorhombic with 8 atoms in the conventional unit cell. Each atom has only one nearest neighbor (at a distance of 244 pm) and six other neighbors within additional 39 pm. Many stable and metastable phases are found as function of temperature and pressure.
The bonding between the nearest neighbors is found to be of covalent character, hence Ga2 dimers are seen as the fundamental building blocks of the crystal. The compound with arsenic, gallium arsenide is a semiconductor commonly used in light-emitting diodes.
High-purity gallium is dissolved slowly by mineral acids.
Gallium has no known biological role, although it might be involved in metabolism stimulation.


Gallium (the Latin Gallia means "Gaul," essentially modern France; and the Latin gallus means "rooster") was discovered spectroscopically by Lecoq de Boisbaudran in 1875 by its characteristic spectrum (two violet lines) in an examination of a zinc blende from the Pyrenees. Before its discovery, most of its properties had been predicted and described by Dmitri Mendeleev (who had called the hypothetical element "eka-aluminium") on the basis of its position in his periodic table. Later, in 1875, Boisbaudran obtained the free metal by electrolysis of its hydroxide in potassium hydroxide solution. He named the element "gallia" after his native land of France. It was later claimed that, in one of those multilingual puns so beloved of men of science in the early 19th century, he had also named gallium after himself, as his name, "Le coq," is the French for "the rooster," and the Latin for "rooster" is "gallus"; however, in an 1877 article Le coq denied this supposition.


Gallium does not exist in free form in nature, nor do any high-gallium minerals exist to serve as a primary source of extraction of the element or its compounds. Gallium is found and extracted as a trace component in bauxite, coal, diaspore, germanite, and sphalerite. The United States Geological Survey (USGS) estimates gallium reserves based on 50 ppm by weight concentration in known reserves of bauxite and zinc ores. Some flue dusts from burning coal have been shown to contain small quantities of gallium, typically less than 1 % by weight.
Most gallium is extracted from the crude aluminium hydroxide solution of the Bayer process for producing alumina and aluminium. A mercury cell electrolysis and hydrolysis of the amalgam with sodium hydroxide leads to sodium gallate. Electrolysis then gives gallium metal. For semiconductor use, further purification is carried out using zone melting, or else single crystal extraction from a melt (Czochralski process). Purities of 99.9999% are routinely achieved and commercially widely available.
One chemist estimated in 2007 that at the current rate of usage, the world's supply of gallium would be exhausted by about the year 2017.


Semiconductor and electronic industry. The semiconductor applications are the main reason for the low-cost commercial availability of the extremely high-purity (99.9999+%) metal:
As a wetting, and alloy improvement agent:
As part of an energy storage mechanism:
  • Aluminium is reactive enough to reduce water to hydrogen, being oxidized to aluminium oxide. However, the aluminium oxide forms a protective coat which prevents further reaction. When gallium is alloyed with aluminium, the coat does not form, thus the alloy can potentially provide a solid hydrogen source for transportation purposes, which would be more convenient than a pressurized hydrogen tank. Resmelting the resultant aluminium oxide and gallium mixture to metallic aluminium and gallium and reforming these into electrodes would constitute most of the energy input into the system, while electricity produced by a hydrogen fuel cell could constitute an energy output.The thermodynamic efficiency of the aluminium smelting process is said to be approximately 50 percent. Therefore, at most no more than half the energy that goes into smelting aluminium could be recovered by a fuel cell.
For liquid alloys:
  • It has been suggested that a liquid gallium-tin alloy could be used to cool computer chips in place of water. As it conducts heat approximately 65 times better than water it can make a comparable coolant.
  • Gallium is used in some high temperature thermometers.
  • A liquid Gallium-Indium-Tin alloy has been used in activating Aluminum. Activated Aluminum reacts with water generating Hydrogen and steam. This reaction is considered a feasible process in the hydrogen economy.
Biomedical applications:
  • A low temperature liquid eutectic alloy of gallium, indium, and tin, is widely available in medical thermometers (fever thermometers), replacing problematic mercury. This alloy, with the trade name Galinstan (with the "-stan" referring to the tin), has a freezing point of −20°C.
  • Gallium salts such as gallium citrate and gallium nitrate are used as radiopharmaceutical agents in nuclear medicine imaging. (The form or salt is not important, since it is the free dissolved gallium ion Ga3+ which is active). For these applications, a radioactive isotope such as 67Ga is used. The body handles Ga3+ in many ways as though it were iron, and thus it is bound (and concentrates) in areas of inflammation, such as infection, and also areas of rapid cell division. This allows such sites to be imaged by nuclear scan techniques. See gallium scan. This use has largely been replaced by fluorodeoxyglucose (FDG) for positron emission tomography, "PET" scan.
  • Gallium nitrate, both oral and topical, is finding use in treating arthritis.
  • Gallium maltolate is in clinical and preclinical trials as a potential treatment for cancer, infectious disease, and inflammatory disease.
  • Much research is being devoted to gallium alloys as substitutes for mercury dental amalgams, but these compounds have yet to see wide acceptance.
  • Research is being conducted to determine whether gallium can be used to fight bacterial infections in people with cystic fibrosis. Gallium is similar in size to iron, an essential nutrient for respiration. When gallium is mistakenly picked up by bacteria such as Pseudomonas, the bacteria's ability to respire is interfered with and the bacteria die. The mechanism behind this is that iron is redox active, which allows for the transfer of electrons during respiration, but gallium is redox inactive.
  • Magnesium gallate containing impurities (such as Mn2+), is beginning to be used in ultraviolet-activated phosphor powder.
  • Neutrino detection. Possibly the largest amount of pure gallium ever collected in a single spot was the GALLEX neutrino detector operated in the early 1990s in an Italian mountain tunnel. The detector contained 12.2 tons of watered gallium-71. Solar neutrinos caused a few atoms of Ga-71 to become radioactive Ge-71, which were detected. The solar neutrino flux deduced was found to have a deficit of 40% from theory. This was not explained until better solar neutrino detectors and theories were constructed (see SNO).
  • As a liquid metal ion source for a focused ion beam.


While not considered toxic, the data about gallium are inconclusive. Some sources suggest that it may cause dermatitis from prolonged exposure; other tests have not caused a positive reaction. Like most metals, finely divided gallium loses its luster. Powdered gallium appears grey. When gallium is handled with bare hands, the extremely fine dispersion of liquid gallium droplets which results from wetting skin with the metal may appear as a grey skin stain.
gallium in Afrikaans: Gallium
gallium in Arabic: غاليوم
gallium in Bengali: গ্যালিয়াম
gallium in Belarusian: Галій
gallium in Bosnian: Galijum
gallium in Bulgarian: Галий
gallium in Catalan: Gal·li
gallium in Czech: Gallium
gallium in Corsican: Galliu
gallium in Welsh: Galiwm
gallium in Danish: Gallium
gallium in German: Gallium
gallium in Estonian: Gallium
gallium in Modern Greek (1453-): Γάλλιο
gallium in Spanish: Galio
gallium in Esperanto: Galiumo
gallium in Basque: Galio
gallium in Persian: گالیوم
gallium in French: Gallium
gallium in Friulian: Gali
gallium in Irish: Gailliam
gallium in Manx: Gallium
gallium in Galician: Galio
gallium in Korean: 갈륨
gallium in Armenian: Գալիում
gallium in Hindi: गैलिअम
gallium in Croatian: Galij
gallium in Ido: Galio
gallium in Indonesian: Galium
gallium in Icelandic: Gallín
gallium in Italian: Gallio (elemento)
gallium in Hebrew: גליום
gallium in Javanese: Galium
gallium in Swahili (macrolanguage): Gali
gallium in Haitian: Galyòm
gallium in Kurdish: Galyûm
gallium in Latin: Gallium
gallium in Latvian: Gallijs
gallium in Luxembourgish: Gallium
gallium in Lithuanian: Galis
gallium in Lojban: fasyjinme
gallium in Hungarian: Gallium
gallium in Dutch: Gallium
gallium in Japanese: ガリウム
gallium in Norwegian: Gallium
gallium in Norwegian Nynorsk: Gallium
gallium in Occitan (post 1500): Galli
gallium in Uzbek: Galliy
gallium in Polish: Gal
gallium in Portuguese: Gálio
gallium in Quechua: Galyu
gallium in Russian: Галлий
gallium in Sicilian: Galliu (elementu)
gallium in Simple English: Gallium
gallium in Slovak: Gálium
gallium in Slovenian: Galij
gallium in Serbian: Галијум
gallium in Serbo-Croatian: Galijum
gallium in Finnish: Gallium
gallium in Swedish: Gallium
gallium in Tamil: காலியம்
gallium in Thai: แกลเลียม
gallium in Vietnamese: Gali
gallium in Turkish: Galyum
gallium in Ukrainian: Галій
gallium in Chinese: 镓
Privacy Policy, About Us, Terms and Conditions, Contact Us
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2
Material from Wikipedia, Wiktionary, Dict
Valid HTML 4.01 Strict, Valid CSS Level 2.1